organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[5-(4-Hydroxyphenyl)-1-phenyl-1*H*-pyrazol-3-yl]phenol

Amir Badshah,^a Aurangzeb Hasan,^a* Cecilia R. Barbarín^b and Mehwash Zia^a

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDivisión de Estudios de Posgrado, Facultad de Ciencias Químicas, U.A.N.L., Guerreo y Progreso S/N, Col. Treviño, C.P. 64570, Monterrey, NL, Mexico Correspondence e-mail: flavonoids@hotmail.com

Received 21 May 2008; accepted 5 June 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.129; data-to-parameter ratio = 16.4.

The title compound, $C_{21}H_{16}N_2O_2$, was derived from 1-(2hydroxyphenyl)-3-(4-methoxyphenyl)propane-1,3-dione. The pyrazole ring and one of the hydroxy-substituted benzene rings are approximately coplanar, forming a dihedral angle of 7.5 (3)°. The relative conformation of these rings may be influenced by an intramolecular $O-H\cdots N$ hydrogen bond. In the crystal structure, intermolecular $O-H\cdots O$ hydrogen bonds involving different hydroxy groups of symmetry-related molecules form extended chains along [201].

Related literature

For related literature, see: Ahmad *et al.* (1990, 1997); Beeam *et al.* (1984); Elguero (1983); Trofinenko (1972).

Experimental

Crystal data C₂₁H₁₆N₂O₂

 $M_r=328.36$

Monochnic, PZ_1/c	Z = 4
a = 10.793 (3) Å	Mo $K\alpha$ radiation
b = 12.948 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.705 (3) Å	T = 298 (2) K
$\beta = 93.508 \ (14)^{\circ}$	$0.44 \times 0.40 \times 0.26 \text{ mm}$
V = 1632.7 (7) Å ³	
Data collection	
Data collection	
Data collection Siemens P4 diffractometer	$R_{\rm int} = 0.024$
Data collection Siemens P4 diffractometer Absorption correction: none	$R_{\rm int} = 0.024$ 3 standard reflections
Data collection Siemens P4 diffractometer Absorption correction: none 5767 measured reflections	$R_{\rm int} = 0.024$ 3 standard reflections every 97 reflections
Data collection Siemens P4 diffractometer Absorption correction: none 5767 measured reflections 3720 independent reflections	$R_{int} = 0.024$ 3 standard reflections every 97 reflections intensity decay: 3.6%

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & 227 \text{ parameters} \\ wR(F^2) &= 0.128 & H\text{-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{max} &= 0.15 \text{ e } \text{\AA}^{-3} \\ 3720 \text{ reflections} & \Delta\rho_{min} &= -0.16 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1B \cdots O2^{i} \\ O2 - H2B \cdots N2 \end{array}$	0.82 0.82	2.05 1.87	2.824 (2) 2.595 (2)	158 147
	4 1	1		

Symmetry code: (i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: XSCANS (Siemens, 1999); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus.

AB is grateful to the Higher Education Commission of Pakistan for the PhD scholarship grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2632).

References

- Ahmad, R., Malik, M. A. & Zia-ul-Haq, M. (1990). J. Chem. Soc. Pak. 12, 352–355.
- Ahmad, R., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem. 128, 633–640.
- Beeam, C. F., Hall, H. L., Huff, A. M., Tummons, R. C. & Grady, S. A. O. (1984). J. Heteroatom. Chem. 21, 1897–1902.
- Bonati, F. (1980). Chim. Ind. (Roma), 62, 323-328,
- Elguero, J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A, pp. 167, 304. Elmford, New York: Pergamon Press.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1999). XSCANS User's Manual. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Trofinenko, S. (1972). Chem. Rev. 72, 497-500.

supplementary materials

Acta Cryst. (2008). E64, o1264 [doi:10.1107/S1600536808017054]

2-[5-(4-Hydroxyphenyl)-1-phenyl-1*H*-pyrazol-3-yl]phenol

A. Badshah, A. Hasan, C. R. Barbarín and M. Zia

Comment

Pyrazoles are important because of their potential for biological activity (Beeam *et al.*, 1984). Both traditional and new scientific methods have been used used to prepare new materials for medicine (Elguero *et al.*, 1983) and agriculture (Tro-finenko, 1972). Neutral and anionic pyrazoles are excellent ligands and their co-ordination chemistry has been extensively studied (Bonati, 1980). In the molecular structure of the title compound (III) (Fig. 1 and Fig. 3) there is an intramolecular hydrogen bond between the OH group of one phenolic group and the N atom of the pyrazole group (see Table 1 for hydrogen bond details). One of the phenyl groups is approximately coplanar with the pyrazole groups (dihedral angle = 7.5 (3)°), possibly due to the intramolecular hydrogen bond between non equivalent hydroxy groups of symmetry related molecules, forms extended chains along [201] (Fig. 2).

Experimental

Compound (I) [see Fig. 3] was prepared by a modified Baker Venkataram rearrangement as reported earlier (Ahmad *et al.*, 1990, 1997). Purification was carried out by recrystallization using absolute ethanol. Compound (II) was synthesized by adding 0.1 mole of phenyl hydrazine in 0.1 mole of compound (II) dissolved in 200 ml of absolute ethanol. The mixture was refluxed for 7 h. Solvent was removed under reduced pressure. Highly viscous residue was recrystallized using absolute ethanol. Compound (III) was synthesized by demethylation of compound (II) using 48% hydrogen bromide in acetic acid. Single crystals suitable for X-ray analysis were obtained by recrystallization from an ethanol solution of (III) at room temperature (Yield: 96%, m.p: 490K).

Refinement

All H atoms were placed in idealized positions and treated as riding atoms, with C—H = 0.93Å, O-H = 0.82Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (III) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. Part of the crystal structure of (III) showing the hydrogen bonds as dashed lines.

Fig. 3. Reaction scheme.

2-[5-(4-Hydroxyphenyl)-1-phenyl-1H-pyrazol-3-yl]phenol

Crystal data	
$C_{21}H_{16}N_2O_2$	$F_{000} = 688$
$M_r = 328.36$	$D_{\rm x} = 1.336 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 490 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.793 (3) Å	Cell parameters from 84 reflections
b = 12.948 (3) Å	$\theta = 4.6 - 12.4^{\circ}$
c = 11.705 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 93.508 \ (14)^{\circ}$	T = 298 (2) K
$V = 1632.7 (7) \text{ Å}^3$	Prismatic, colourless
<i>Z</i> = 4	$0.44 \times 0.40 \times 0.26 \ mm$

Data collection

Siemens P4 diffractometer	$R_{\rm int} = 0.024$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 298(2) K	$h = -14 \rightarrow 4$
$2\theta/\omega$ scans	$k = -16 \rightarrow 1$
Absorption correction: none	$l = -15 \rightarrow 15$
5767 measured reflections	3 standard reflections
3720 independent reflections	every 97 reflections
2353 reflections with $I > 2\sigma(I)$	intensity decay: 3.7%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2 + 0.4416P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.128$	$(\Delta/\sigma)_{max} < 0.001$

<i>S</i> = 1.03	$\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$

3720 reflections

227 parameters

 $\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc²\lambda³/sin(20)]^{-1/4}

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0155 (18)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.19429 (12)	0.33852 (11)	-0.38082 (11)	0.0598 (4)
H1B	-0.2627	0.3197	-0.3621	0.090*
02	0.55378 (12)	0.16872 (10)	0.17109 (13)	0.0603 (4)
H2B	0.5054	0.2064	0.1339	0.090*
N1	0.26395 (13)	0.27005 (12)	-0.01205 (13)	0.0467 (4)
N2	0.34918 (13)	0.21948 (12)	0.05691 (13)	0.0462 (4)
C1	0.3431 (2)	0.43942 (17)	-0.05478 (19)	0.0628 (6)
H1A	0.4075	0.4086	-0.0915	0.075*
C2	0.3343 (3)	0.54518 (19)	-0.0493 (2)	0.0775 (7)
H2A	0.3933	0.5863	-0.0821	0.093*
C3	0.2391 (2)	0.58993 (18)	0.0041 (2)	0.0721 (7)
H3A	0.2326	0.6615	0.0064	0.087*
C4	0.1531 (2)	0.53006 (17)	0.0543 (2)	0.0653 (6)
H4A	0.0891	0.5610	0.0915	0.078*
C5	0.16142 (18)	0.42387 (16)	0.04968 (17)	0.0546 (5)
H5A	0.1035	0.3827	0.0837	0.066*
C6	0.25650 (16)	0.38005 (14)	-0.00589 (15)	0.0460 (4)
C7	0.21875 (16)	0.10653 (14)	-0.03158 (15)	0.0437 (4)
H7A	0.1815	0.0444	-0.0540	0.052*
C8	0.18333 (15)	0.20293 (15)	-0.06634 (15)	0.0433 (4)
C9	0.08425 (15)	0.23722 (14)	-0.14967 (15)	0.0441 (4)
C10	-0.03190 (17)	0.19422 (15)	-0.15016 (17)	0.0523 (5)
H10A	-0.0474	0.1428	-0.0975	0.063*
C11	-0.12620 (17)	0.22564 (16)	-0.22714 (17)	0.0543 (5)
H11A	-0.2041	0.1950	-0.2266	0.065*
C12	-0.10491 (16)	0.30191 (14)	-0.30416 (15)	0.0460 (4)
C13	0.01140 (17)	0.34379 (16)	-0.30736 (16)	0.0516 (5)
H13A	0.0269	0.3941	-0.3614	0.062*
C14	0.10531 (17)	0.31154 (16)	-0.23075 (16)	0.0507 (5)
H14A	0.1841	0.3402	-0.2337	0.061*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C15	0.32262 (15)	0.11962 (14)	0.04482 (14)	0.0407 (4)
C16	0.40064 (15)	0.04285 (14)	0.10482 (14)	0.0404 (4)
C17	0.36890 (17)	-0.06076 (15)	0.10014 (15)	0.0476 (4)
H17A	0.2955	-0.0804	0.0603	0.057*
C18	0.44262 (18)	-0.13518 (16)	0.15259 (17)	0.0554 (5)
H18A	0.4201	-0.2044	0.1471	0.066*
C19	0.55033 (18)	-0.10638 (17)	0.21343 (16)	0.0546 (5)
H19A	0.6000	-0.1563	0.2503	0.066*
C20	0.58441 (18)	-0.00551 (16)	0.21988 (16)	0.0525 (5)
H20A	0.6572	0.0133	0.2613	0.063*
C21	0.51143 (16)	0.06923 (14)	0.16520 (15)	0.0447 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0470 (8)	0.0663 (9)	0.0638 (8)	0.0073 (7)	-0.0160 (6)	0.0117 (7)
02	0.0474 (8)	0.0503 (8)	0.0796 (10)	0.0043 (6)	-0.0253 (7)	-0.0134 (7)
N1	0.0380 (8)	0.0451 (9)	0.0548 (9)	0.0054 (7)	-0.0141 (7)	-0.0037 (7)
N2	0.0375 (8)	0.0480 (9)	0.0514 (8)	0.0067 (7)	-0.0119 (7)	-0.0054 (7)
C1	0.0587 (13)	0.0636 (14)	0.0668 (13)	-0.0021 (11)	0.0084 (10)	0.0014 (11)
C2	0.0867 (18)	0.0632 (15)	0.0824 (16)	-0.0137 (14)	0.0036 (14)	0.0141 (13)
C3	0.0878 (18)	0.0479 (12)	0.0775 (15)	0.0045 (12)	-0.0202 (14)	0.0046 (11)
C4	0.0574 (13)	0.0601 (13)	0.0764 (14)	0.0163 (11)	-0.0138 (11)	-0.0140 (11)
C5	0.0446 (10)	0.0554 (12)	0.0631 (12)	0.0036 (9)	-0.0028 (9)	-0.0045 (10)
C6	0.0423 (10)	0.0457 (10)	0.0483 (10)	0.0043 (8)	-0.0104 (8)	-0.0023 (8)
C7	0.0368 (9)	0.0468 (10)	0.0467 (9)	-0.0006 (8)	-0.0051 (7)	-0.0039 (8)
C8	0.0324 (8)	0.0524 (10)	0.0443 (9)	0.0035 (8)	-0.0032 (7)	-0.0031 (8)
C9	0.0348 (9)	0.0504 (10)	0.0460 (9)	0.0036 (8)	-0.0063 (7)	-0.0021 (8)
C10	0.0423 (10)	0.0558 (11)	0.0572 (11)	-0.0031 (9)	-0.0089 (8)	0.0118 (9)
C11	0.0363 (9)	0.0598 (12)	0.0651 (12)	-0.0072 (9)	-0.0108 (9)	0.0073 (10)
C12	0.0400 (9)	0.0490 (10)	0.0475 (10)	0.0079 (8)	-0.0103 (8)	-0.0008 (8)
C13	0.0477 (11)	0.0601 (12)	0.0465 (10)	-0.0009 (9)	-0.0014 (8)	0.0095 (9)
C14	0.0359 (9)	0.0654 (12)	0.0500 (10)	-0.0050 (9)	-0.0021 (8)	0.0021 (9)
C15	0.0351 (9)	0.0465 (10)	0.0400 (8)	0.0025 (8)	-0.0022 (7)	-0.0052 (8)
C16	0.0344 (8)	0.0487 (10)	0.0375 (8)	0.0031 (8)	-0.0034 (7)	-0.0033 (7)
C17	0.0415 (10)	0.0524 (11)	0.0478 (10)	-0.0047 (8)	-0.0051 (8)	0.0032 (8)
C18	0.0518 (11)	0.0526 (12)	0.0612 (11)	0.0003 (9)	-0.0005 (9)	0.0094 (9)
C19	0.0480 (11)	0.0617 (13)	0.0540 (11)	0.0108 (10)	0.0012 (9)	0.0122 (10)
C20	0.0407 (10)	0.0663 (13)	0.0488 (10)	0.0059 (9)	-0.0097 (8)	-0.0004 (9)
C21	0.0391 (9)	0.0491 (10)	0.0449 (9)	0.0044 (8)	-0.0052 (8)	-0.0084 (8)

Geometric parameters (Å, °)

O1-C12	1.362 (2)	C8—C9	1.471 (2)
O1—H1B	0.8200	C9—C10	1.371 (3)
O2—C21	1.367 (2)	C9—C14	1.380 (3)
O2—H2B	0.8200	C10-C11	1.379 (3)
N1—N2	1.3549 (19)	C10—H10A	0.9300
N1—C8	1.360 (2)	C11—C12	1.366 (3)

N1—C6	1.428 (2)	C11—H11A	0.9300
N2—C15	1.330 (2)	C12—C13	1.370 (3)
C1—C6	1.363 (3)	C13—C14	1.376 (3)
C1—C2	1.374 (3)	С13—Н13А	0.9300
C1—H1A	0.9300	C14—H14A	0.9300
C2—C3	1.364 (4)	C15—C16	1.455 (2)
C2—H2A	0.9300	C16—C17	1.385 (3)
C3—C4	1.369 (3)	C16—C21	1.394 (2)
С3—НЗА	0.9300	C17—C18	1.371 (3)
C4—C5	1.379 (3)	С17—Н17А	0.9300
C4—H4A	0.9300	C18—C19	1.377 (3)
C5—C6	1.371 (3)	C18—H18A	0.9300
С5—Н5А	0.9300	C19—C20	1.358 (3)
С7—С8	1.360 (3)	С19—Н19А	0.9300
C7—C15	1.401 (2)	C20—C21	1.380 (3)
С7—Н7А	0.9300	C20—H20A	0.9300
C12—O1—H1B	109.5	C11—C10—H10A	119.3
C21—O2—H2B	109.5	C12—C11—C10	119.82 (17)
N2—N1—C8	111.18 (15)	C12—C11—H11A	120.1
N2—N1—C6	119.34 (14)	C10—C11—H11A	120.1
C8—N1—C6	128.64 (14)	01	123.06 (17)
C15—N2—N1	105.81 (13)	01-C12-C13	117.22 (17)
C6—C1—C2	119.5 (2)	C11—C12—C13	119.71 (16)
C6—C1—H1A	120.3	C12—C13—C14	120.10 (18)
C2—C1—H1A	120.3	C12—C13—H13A	120.0
$C_3 - C_2 - C_1$	120.0 (2)	C14—C13—H13A	120.0
C3—C2—H2A	120.0	C13—C14—C9	120.92 (17)
C1—C2—H2A	120.0	C13—C14—H14A	119.5
C2—C3—C4	120.4 (2)	C9—C14—H14A	119.5
С2—С3—НЗА	119.8	N2—C15—C7	110.14 (15)
С4—С3—НЗА	119.8	N2—C15—C16	119.87 (15)
C3—C4—C5	120.0 (2)	C7—C15—C16	129.96 (16)
C3—C4—H4A	120.0	C17—C16—C21	117.38 (16)
C5—C4—H4A	120.0	C17—C16—C15	120.54 (15)
C6—C5—C4	118.9 (2)	C21—C16—C15	122.04 (16)
С6—С5—Н5А	120.5	C18—C17—C16	121.86 (18)
C4—C5—H5A	120.5	С18—С17—Н17А	119.1
C1—C6—C5	121.20 (19)	С16—С17—Н17А	119.1
C1—C6—N1	119.94 (18)	C17—C18—C19	119.33 (19)
C5—C6—N1	118.86 (18)	C17—C18—H18A	120.3
C8—C7—C15	106.22 (15)	C19-C18-H18A	120.3
С8—С7—Н7А	126.9	C20-C19-C18	120.44 (18)
С15—С7—Н7А	126.9	С20—С19—Н19А	119.8
N1—C8—C7	106.65 (14)	С18—С19—Н19А	119.8
N1—C8—C9	122.37 (17)	C19—C20—C21	120.24 (18)
С7—С8—С9	130.90 (17)	C19—C20—H20A	119.9
C10—C9—C14	117.98 (16)	C21—C20—H20A	119.9
С10—С9—С8	120.49 (17)	O2—C21—C20	117.24 (16)
C14—C9—C8	121.51 (16)	O2—C21—C16	122.02 (16)

supplementary materials

C9—C10—C11	121.40 (18)	C20—C21—C16	120.73 (18)
C9—C10—H10A	119.3		
C8—N1—N2—C15	0.7 (2)	C10-C11-C12-O1	-178.41 (18)
C6—N1—N2—C15	171.10 (16)	C10-C11-C12-C13	2.6 (3)
C6—C1—C2—C3	-0.4 (4)	O1-C12-C13-C14	178.78 (17)
C1—C2—C3—C4	1.2 (4)	C11—C12—C13—C14	-2.2 (3)
C2—C3—C4—C5	-0.9 (3)	C12—C13—C14—C9	-0.2 (3)
C3—C4—C5—C6	-0.1 (3)	C10-C9-C14-C13	2.0 (3)
C2—C1—C6—C5	-0.7 (3)	C8—C9—C14—C13	-179.23 (17)
C2—C1—C6—N1	179.36 (19)	N1—N2—C15—C7	-0.6 (2)
C4—C5—C6—C1	0.9 (3)	N1—N2—C15—C16	177.64 (15)
C4—C5—C6—N1	-179.09 (17)	C8—C7—C15—N2	0.4 (2)
N2—N1—C6—C1	76.2 (2)	C8—C7—C15—C16	-177.66 (17)
C8—N1—C6—C1	-115.2 (2)	N2-C15-C16-C17	175.03 (17)
N2—N1—C6—C5	-103.7 (2)	C7-C15-C16-C17	-7.1 (3)
C8—N1—C6—C5	64.8 (3)	N2-C15-C16-C21	-7.4 (3)
N2—N1—C8—C7	-0.4 (2)	C7-C15-C16-C21	170.51 (18)
C6—N1—C8—C7	-169.74 (17)	C21—C16—C17—C18	0.1 (3)
N2—N1—C8—C9	-177.64 (16)	C15-C16-C17-C18	177.79 (17)
C6—N1—C8—C9	13.1 (3)	C16—C17—C18—C19	1.1 (3)
C15—C7—C8—N1	0.0 (2)	C17—C18—C19—C20	-1.1 (3)
C15—C7—C8—C9	176.91 (18)	C18—C19—C20—C21	-0.1 (3)
N1-C8-C9-C10	-138.9 (2)	C19—C20—C21—O2	-177.28 (18)
C7—C8—C9—C10	44.6 (3)	C19—C20—C21—C16	1.4 (3)
N1-C8-C9-C14	42.4 (3)	C17—C16—C21—O2	177.27 (17)
C7—C8—C9—C14	-134.1 (2)	C15—C16—C21—O2	-0.4 (3)
C14—C9—C10—C11	-1.6 (3)	C17—C16—C21—C20	-1.4 (3)
C8—C9—C10—C11	179.66 (18)	C15—C16—C21—C20	-179.04 (17)
C9—C10—C11—C12	-0.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O1—H1B····O2 ⁱ	0.82	2.05	2.824 (2)	158
O2—H2B…N2	0.82	1.87	2.595 (2)	147
Symmetry codes: (i) $x-1$, $-y+1/2$, $z-1/2$.				

Fig. 2

Fig. 3